17 avril 2011

MOX ?

L'uranium à l'état naturel se présente sous forme d'oxyde. Deux isotopes sont présents:

            - L'U238, à hauteur de 99,3 % , non fissile mais fertile
            - L'U235, avec une teneur de 0,7 % , fissile

Pour pouvoir utiliser ce minerai naturel, tel quel, comme combustible, il faut disposer du ralentisseur de neutrons (modérateur) le plus efficace : l'eau lourde, molécule d'eau composée à partir d'un isotope de l'hydrogène, le deutérium. D'où cette fameuse "bataille de l'eau lourde", au cours de laquelle un commando alla détruire une usine de séparation isotopique, située en Norvège, disposant d'un stock d'eau lourde dont auraient pu se servir les Nazis. Même chose pour la mise à l'abri de l'eau lourde française par Joliot Curie, au moment de la débâcle française, en 1940. De tels réacteurs existent, au Canada. Son les appelle CANDU, de CANada Deutérium Uranium. Ceux-ci font qu'on ne peut pas utiliser cette eau lourde comme fluide caloporteur. Il ya donc automatiquement deux ensembles. Un circuit prélevant l'énergie thermique et un ensemble de tuyauteries emplies du modérateur eau lourde.

D'où l'appellation "Réacteurs à Eau Légère" (à eau pressurisée, ou "bouillante"), par opposition à ces (rares) réacteurs contenant de l'eau lourde.
En dehors des réacteurs utilisant l'eau lourde comme modérateur, il faudra réaliser un enrichissement préalable du minerai d'uranium, qu'on commence, à partir de l'oxyde, par transformer en hexafluorure d'uranium.

U F6

sous forme gazeuse, qui est enrichi par centrifugation, à hauteur de 3 à 6 % d'U235. Alors, en réalisant des assemblage concentrant une masse de l'ordre de la centaine de tonnes, cette charge peut " diverger ", c'est à dire devenir le lieu de réactions en chaîne, productrices d'énergie.
Si on utilise un combustible nucléaire à faible taux d'enrichissement, le réacteur devra être plus volumineux. Au fil des années, les ingénieurs du nucléaire ont progressé dans la conception des cœurs. En effet, dans un coeur cylindrique, le taux de réaction de fission sera plus élevé dans les éléments situés près du centre. On a joué sur la permutation des assemblages situés près de l'axe par ceux de la périphérie. On a joué aussi sur une distribution non homogène d'éléments modérateurs, en réduisant le taux de réactivité au centre, de manière à avoir un épuisement homogène de la charge des réacteurs. On utilise aussi des réflecteurs de neutrons, toutes ces techniques ayant permis de travailler avec des taux d'enrichissement plus bas, donc à moindre coût.
Les réacteurs à usage militaire, comme ceux des sous-marins et des porte-avion requièrent une plus grande compacité et utiliseront de l'uranium à un taux d'enrichissement plus élevé.
Disons qu'avec des taux de 3 à 20 % d'U235 on reste dans de l'uranium civil
De 20 % à 90 % est plus, on entre dans le domaine de l'uranium de qualité militaire. Avec des forts pourcentages, la fabrication de bombes à uranium est possible.
Mais en règle générale les bombes A sont faites avec du plutonium, qui requiert une masse critique plus faible. Un uranium qui est fabriqué en laissant des neutrons rapides s'échapper et bombarder une couverture fertile d'U 238, selon la réaction :

U238 + neutron   donne   PU239

Il n'y a donc pas de frontière claire séparant le nucléaire civil du nucléaire militaire. Si on réduit la modération d'un réacteur civil, celui-ci peut devenir plutonigène, fournir à terme du plutonium pour faire des bombes à fission. Voir ma bande dessinée "Énergétiquement vôtre", téléchargeable gratuitement sur le site de Savoir sans Frontières. Signalons au passage que dans un fonctionnement normal d'un réacteur civil il y a production d'un peu de plutonium car la substance modératrice, si elle va réduire la quantité de neutrons rapides produits, ne pourra totalement les éliminer. Ce Plutonium, mêlé à l'uranium, fait donc partie des "déchets" issus d'une exploitation civile.
Revenons au combustible. L'enrichissement de cet uranium est réalisé en France dans le centre de Tricastin. Consommant l'énergie électrique produite par trois centrales nucléaires implantées sur le site (c'est le plus gros "client" d'Edf en France), ce centre réalise cette opération d'enrichissement à partir du minerai d'uranium naturel, qui ne contient que 0,7 % d'U235. L'enrichissement isotopique est obtenu principalement par une cascades de centrifugeuses. Au terme de l'opération on obtient
- De l'Uranium enrichi, avec 3 à 6 % d'U235
- Le résidu étant de l'uranium "appauvri", contenant de 0,2 à 0,3 % d'U235, dont on se servira pour faire des têtes perforantes pour obus.
Prenons le cas des réacteurs les plus courants, ceux du parc français, des REP, des Réacteurs à Eau Pressurisée. On les charge avec un combustible comprenant 3 % d'U235. Au cours du fonctionnement du réacteur, qui est de l'ordre d'une année, la composition du combustible évolue dans le temps. Il y a production de plutonium Pu239, plus de différents déchets de fission, inexploitables. Le pourcentage d'U 235 diminue avec le temps. Quand ce taux tombe à 1 % ce combustible devient inutilisable. La densité de matière fissile devient alors trop faible. Il faut procéder à son remplacement Au passage, une certaine quantité de plutonium a été produite, par capture d'un neutron. Mais ce plutonium ne se prête pas à une participation à la production d'énergie par fission dans ce régime de fonctionnement avec des neutrons ralentis par l'eau, laquelle joue à la fois le rôle de fluide caloporteur et de modérateur, c'est à dire de ralentisseur de neutrons, qui sont émis à 20 km/s et doivent tomber à 2 km/s pour susciter des fissions induites dans l' U235.
Au terme de ce fonctionnement, deux options. Soit on stocke tel quel le contenu du chargement du réacteur "considéré comme brûlé", qui pourtant contient 1% d'U235 et 1 % de Plutonium.
Soit on "retraite" tout cela dans une usine de retraitement ( la Hague ) où on sépare les déchets radiotoxiques, inutilisables, qu'on stocke dans des blocs vitrifiés, en récupérant l'U235 et le Pu239, sinon pur, du moins dilués dans de l'U235 en plus forte concentration, et on obtient quelque chose de fissionable à nouveau.
Cela fait des décennies que les Français ont décidé de jouer la carte de "réacteurs de IV° génération", autrement dit de surgénérateurs à neutrons rapides, comme Superphénix. On lira dans des textes du CEA que la question n'est pas de savoir si on passera à une telle formule, mais quand on prendra la décision de remplacer le parc de réacteurs à Uranium par des surgénérateurs, qui seront alors "déployés" sur le territoire français.
Mais le surgénérateur Superphénix, qui était un prototype de ces "réacteurs de IV° génération" nous a fait un belle frayeur en 1990. Le toit du hangar où étaient abritées les turbines s'est effondré sous le poids de la neige !

Coup de chance, ce jour-là, le réacteur était arrêté
Sinon on aurait eu une jolie catastrophe. 

Ça a suscité une vague de protestations et ce réacteur a été arrêté. En fait, comme a pu le voir dans les propos de Balibar et de feu Charpak, cette idée était toujours présente, et ceux-ci souhaitaient simplement "que le projet reprenne son cours".
Des "barons de l'atome" (des polytechniciens, du "corps des mines", à cent pour cent, constituant une partie de cette tentaculaire maffia française) ont trouvé "la solution" : Remplacer le dangereux sodium, comme fluide caloporteur par du ... plomb fondu.
J'ai ce qu'il faut pour faire un dossier sur Tchernobyl, en rappelant tout ce qui s'est passé. L'usage de plomb fondu n'écarte pas le danger inhérent à la tonne de plutonium contenue dans ces réacteurs surgénérateurs. S'il n'y avait que cela, une catastrophe nucléaire éparpillerait alors du plomb vaporisé, puis condensé en particules, sur un vaste territoire. Température de vaporisation 1750°C, vite atteinte en cas d'accident nucléaire (comme ce fut le cas à Tchernobyl).
En plus d'une contamination au plutonium ( durée de vie 24.000 ans) vous auriez une contamination au plomb (saturnisme). Ajoutez que, très vite, les vers de terre enfouissent la terre de surface jusqu'à 20 cm de profondeur. La dépollution est alors impossible.
Pour compléter ce tableau apocalyptique, ajoutons que l'uranium "appauvri" ( à 0,3 % d'U235 au lieu de 0,7 dans le minerai naturel constitue un déchet qui est réutilisé pour faire des obus alliant forte densité et fort pouvoir de pénétration. Après impact, l'uranium est vaporisé, transformé en fines particules qui peuvent être inhalées par "l'ennemi", polluer son sol et créer dans sa descendance des mutations génétiques créant des monstres (Irak), ceci pour "le punir".
En attendant le déploiement des surgénérateurs, notre industrie nucléaire a trouvé une solution intermédiaire en créant le Mox, utilisant la production de l'usine de la Hague. Nous pouvons donc créer ( et vendre ) un nouveau combustible nucléaire, mélange d'U238, d'U235 et de 6 à 7 % de plutonium. Tout cela fonctionnant dans les réacteurs classiques, à eau pressurisée ou à eau bouillante (comme le réacteur numéro 3 de Fukushima ). Simple détail : le coeur contient maintenant du plutonium, et si un accident nucléaire survient maintenant, ça n'est pas de l'iode, du césium ou la palette de cochonneries radioactives possédant des durées de vie plus ou moins longues qu'on expédierait dans la nature, mais du plutonium.
Le plutonium a une durée de vie de 24.000 ans, qu'on peut considérer comme infinie. 

Si un jour un accident pollue une région avec du plutonium, cette pollution sera irréversible.